Digit Detection and Classification Within Images

Lance Wilhelm
Georgia Institute of Technology
North Ave NW, Atlanta, GA 30332

lance.wilhelm@gatech.edu

Abstract

This paper attempts to detect and classify digits within
images with complex scenes accurately. A two-step algo-
rithm is proposed, using MSER with various filtering tech-
niques to identify ROIs containing digits. Then, a fine-tuned
ResNet18 CNN classifies the digit contained within the re-
gions of interest and further filters out unlikely candidates.
The algorithm performs well-detecting ROIs for sharp im-
ages that contain limited complicated blobs and bold text.
The CNN performs well classifying digits within the image
squares and achieves a 98.421% accuracy when evaluated
against the SVHN test dataset. More work should be done
to improve the detection of the ROI detector by using state-
of-the-art deep learning models to detect text.

1. Introduction

Image classification using artificial intelligence tech-
niques to include deep learning has been a topic of much
research in the previous half-century. The ability of a
computer to interpret the raw data within an image, ex-
tract meaningful features, and classify those features lies
at the core of the task. Feature extraction techniques such
as Scale Invariant Feature Transform (SIFT) [19] and His-
togram of Gradients (HOG) [7] combined with classifica-
tion techniques such as support vector machines (SVM) or
K-means clustering allowed for the early ability to classify
images. However, the advent of the convolutional neural
network (CNN) brought about major increases in the ability
of computers to quickly and accurately classify images.

1.1. CNN

Fukushima [10] laid the foundation for the CNN in an
early journal article with their “neocognitron,” a network
that learned without a teacher to recognize patterns based
on geometrical similarity. This work was much later turned
into the first effective CNN by LeCun et al.[17], called
LeNet, which was able to achieve very low error rates on
the now famous MNIST [17] dataset. But it wasn’t for an-

other 14 years that a CNN breakthrough would come and
usher in the current swell of CNN advancements thanks to
the increased availability of data, computing power, and in-
terest in deep learning. Krizhevsky ef al. [16] developed
AlexNet in 2012 to tackle the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [24] which utilizes the
famous ImageNet dataset [8]. Krizhevsky et al. used mod-
ern parallel graphical processing units (GPU) and more data
to innovate a new network, which included novel architec-
ture to combat overfitting and convergence.

Since AlexNet, modern CNNs have outperformed previ-
ous benchmarks at an increasing rate. Ten years after the
development of Alexnet, the accuracy of the state-of-the-art
models has increased from 63.3% to 91.1% [1]. Notable
CNN models include VGG-16 developed by Simoyan &
Zisserman [25] and ResNet developed by He et al. [13].
Both networks utilized repeated blocks of convolutional
layers that increase in planes with depth. Furthermore,
ResNet introduced the concept of shortcut connections be-
tween the terminal points of each block as a way to pre-
vent vanishing/exploding gradients. Since then, increas-
ingly complex network architectures have provided even
more performance gains.

1.2. Text Detection

Text detection within images has also seen a boost in
performance since the advent of CNNs. However, text de-
tection and classification have been performed extensively
outside of the use of CNNs, much in the same way images
were classified before the efficacy of CNNs. Ohya et al.
used thresholding to select character candidates and then
matched them against defined patterns. Coates et al. [6]
also detected and recognized text within images using fea-
tures learned using K-means clustering and a sliding win-
dow technique. Finally, Goodfellow ef al. [!2] achieved
early performance using the AdaBoost classifier [9]. How-
ever, Matas et al. [20] developed a technique to extract max-
imally stable extremal regions (MSER) from images that
are invariant to rotation and scale and robust to changes in
luminance and noise. This technique proved very useful

in detecting text objects within an image, as they typically
have consistent and stable intensity values. Others have
combined detected MSERs with other techniques to filter
non-text regions out of the candidate pool. One technique
includes the use of geometric features such as region aspect
ratio, Euler number, solidity, compactness, etc., to filter our
regions either using statistical distributions or through the
use of SVMs [3] [11] [27] [18] [23]. Other means of filter-
ing out non-text regions include utilizing the stroke width
transform (SWT) [26] [5] [21] [14] [23] [18] [4] and Canny
edge detection [4] [14] [21] [5].

1.3. SVHN

This paper tackles specifically digit detection and clas-
sification within images. Netzer et al. [22] established a
dataset containing over 600,000 labeled digits cropped from
Street View images which will be used to train a CNN clas-
sifier. Their paper discusses the difficulty of reliably rec-
ognizing characters in complex scenes such as photographs
compared to the practically solved early datasets such as
MNIST. Additionally, their paper discusses the inherent
combined difficulty of finding and recognizing characters
in an image and the compounding potential for failure if
one digit in a string of multiple is incorrect. Lastly, their
assumption about horizontal text with no vertical overlap-
ping and the apparent spacing between digits leaves room
for improvement within their detection and classification
techniques.

2. Approach

This paper utilizes a two-step approach for detecting and
classifying text within images.

1. Region of interest (ROI) detection using MSER and
filtering using aspect ratio, Canny edges, and non-
maximum suppression (NMS).

2. CNN digit classification of the ROIs detected in step 1,
including non-text thresholding.

The MSER detector was implemented using the
OpenCV python package. The detector was tuned to search
for individual digits and not whole words. First, the de-
tected regions and bounding boxes were filtered based on
their aspect ratio. For this paper, any region/bounding box
with an aspect ratio less than 1 or greater than 3.5 was fil-
tered out. Any regions with aspect ratios outside this range
are less likely to be text. Next, the regions/bounding boxes
without Canny edges covering more than 10% of their pix-
els were filtered out. Text within the image is very likely to
have detected Canny edges. Therefore, regions not consist-
ing of a minimal amount of canny edge pixels are not likely
to contain text. Lastly, the remaining bounding boxes are

1000 1250 1500 1750

(b) Extracted Tiles

Figure 1: Example of detected squares after step 1. The
algorithm employed in this paper correctly returned ~143”
for this image.

converted to squares and arranged in ascending order by the
x coordinate of the top left point of the square. An example
of the detected squares within an image is given in figure 1a,
and the resulting tiles arranged in ascending order is given
in figure 1b.

The digit classification CNN was trained on the total
SVHN dataset to include the additional images provided.
The training set was split into a training and validation set
to evaluate the model’s performance during training and en-
able the selection of the best model. The model with the
best accuracy on the validation set was chosen as the final
model and evaluated on a separate test dataset. The dataset
sizes are as follows: training: 589736, validation: 14652,
test: 26032. All models were trained using a single Nvidia
RTX 3090 Ti GPU.

The ROIs detected in step 1 are passed through the
trained CNN to receive digit classifications. The output for
each image from the CNN is a one-hot vector of 10 length
which contains likelihood values for each of the digits (0,
1,..., 10). Taking the argmax of the resulting vector indi-
cates which digit is the most likely detected. Early analysis
of predictions from this CNN indicated that regions con-
taining text typically have values greater than 5.5. Any ROI
with a predicted maximum value less than or equal to 5.5
were filtered out at this point. The resulting classifications
are then converted to strings and returned to the console as

Figure 2: Example of one failure of the algorithm. Vertical
squares are not handled correctly in this algorithm. Also,
one of the door elements was classified as a ”0” and one
of the actual digits was filtered by the CNN threshold. The
result of this classification was ”3320”.

the detected string of digits in an image.

3. Results and Analysis

The text ROI detector performed with marginal success.
Images that contained bolder digits with fewer conflicting
blobs of similar size tended to perform better than images
with thinner text in more complex scenes. The MSER de-
tector also does not handle blurry blobs well, and some ge-
ometric feature constraints could have filtered out positive
ROIs. Cho et al. [5] raise the concern of MSER-based de-
tectors improperly filtering out positive text candidate re-
gions in their paper and relate it to the recall criterion. These
complications are shown by the lack of digit candidate de-
tection in 3 and the many additional negative ROIs that
made it through the filter system in 1. Using CLAHE for
image normalization helped the algorithm handle changes
in contrast and luminance. An example of its robustness
is given in the 717 digit tile in figure 1b, which contains a
shading that splits the image in half.

The final results from the training selection of the CNN
model used for step 2, digit classification, are given in table
1 and the resulting training accuracy, training loss, valida-
tion accuracy, and validation loss for the most significant
models are given in figures 4, 5, 6, and 7, respectively. The
best model came from finetuning a pretrained ResNet18
model over 24 epochs. The newer architecture of ResNet
proved more effective in training efficiency and validation
performance when compared to VGG16. Finetuning a pre-
trained VGG16 model took approximately 6 times longer
per epoch to train and resulted in lower performance. Fea-
ture extraction from pretrained models proved ineffective
and less appreciably faster to train than the fine-tuned mod-
els. Additional models were trained using the original 32
square pixel images in color and grayscale. While their per-
formance was relatively high, they did not outperform the

Figure 3: Example of another failure of the algorithm. Not
all digits are detected within an image. This could be due to
poor MSER performance or too strict of geometric filtering.
This issue pertains to the recall criterion.

train_acc
= vggl6_pretrained_224_autoaugment

resnet_custom_32_color_autoaugment
== resnet_pretrained_224_color_augment = resnet_custom_32_gray

95

90

85

80

75 Step

Figure 4: Training accuracy for CNN models

train_loss
= vggl6_pretrained_224_autoaugment

resnet_custom_32_color_autoaugment
== resnet_pretrained_224_color_augment = resnet_custom_32_gray
0.8

0.6

0.4

0.2
Step
— s
5 5

Figure 5: Training loss for CNN models

models which transformed the 32 square pixels images into
224-pixel squares. Finally, models that utilized training im-
age augmentation (i.e., scale, rotation, solarisation, affine,
warp, etc.) yield appreciable gains in the model’s general-
ization as shown by the validation loss curves in figure 7.
The loss function for all models, which compares the
predicted output with the true labels, was the cross-entropy

Name Runtime (s) | batch_size | epochs | image size | learning rate | optimizer | train_acc (%) | train_loss | val_acc (%) | val_loss
resnet_pretrained_224_color_augment 5978 512 24 224x224 0.0003 Adam 91.43 0.2551 96.44 0.1394
vggl6_pretrained_224_autoaugment 16567 128 11 224x224 0.01 SGD 89.13 0.3305 95.54 0.1701
resnet_custom_224_color_autoaugment | 7204 512 24 224x224 0.0003 Adam 89.05 0.3333 95.49 0.1694
resnet_custom_32_color_autoaugment 1706 512 24 32x32 0.0003 Adam 98.11 0.0664 94.57 0.1939
resnet_pretrained_32_color 679 512 24 32x32 0.0003 Adam 99.99 0.0006 94.52 0.4911
resnet_pretrained_32_gray 679 512 24 32x32 0.0003 Adam 99.98 0.0009 94.21 0.4624
resnet_custom_32_gray 699 512 24 32x32 0.0003 Adam 99.999 0.0001 93.71 0.4460
Table 1: Results from CNN training
val_acc 5000
= vggl6_pretrained_224_autoaugment
5 custom olc utoaugment
== resnet_pretrained_224_color_augment = resnet_custom_32_gray 4000
9%
94
% - 3000
— 2 2494 1
90 o
o S 2335 10 1
o = 2000
0 5 10 15 20 6 1944 3
. . . 0 2981 1
Figure 6: Validation accuracy for CNN models 1000
0 1638
val_loss 4 1568
= vggl6_pretrained_224_autoaugment 0

== resnet_pretrained_224_color_augment = resnet_custom_32_gray

Step

Figure 7: Validation loss for CNN models

loss, as it provides an effective probabilistic comparison be-
tween classes in a multi-class classification model. The
Adam optimizer was chosen because it converges quickly
and efficiently to a solution [15]. SGD has been known to
converge to more optimal solutions, but more slowly than
Adam. Adam was chosen to allow more model testing in a
short time. The learning rate, which determines how new
loss information influences the change in the model param-
eters during training, was set initially to 3 x 10~ for the
Adam optimizer based on cursory research and 1 x 1072
for SGD. A learning rate scheduler was used to decrease
the learning rate by a factor of 10 every 7 epochs, whose
effects can be seen in figures 6 and 7. Effectively control-
ling the learning rate allows the model to find optimums
better without passing over them. Lastly, the batch size, the
number of samples used to train the model in a given pass,
was 512 for all models except VGG16. The batch size was

Predicted label

Figure 8: Confusion matrix for the results of the classifica-
tion of the test SVHN dataset. The final ResNet18 model
achieved an accuracy of 98.421% on the dataset. n = 25621

chosen to maximize GPU memory usage to speed up train-
ing. Smaller batch sizes, which can result in longer training
times, have shown improvements in model generalization.

The selected model yielded an accuracy of 98.421%
when evaluated on the test dataset. The confusion matrix
given in figure 8 shows consistent performance in the clas-
sification of digits, with all having an accuracy of 98% or
greater, except for the 5 digit with an accuracy of 97.9%.
Further training epochs may have yielded a greater accu-
racy, but the decreasing performance increase per epoch
would have necessitated many more epochs to see a sig-
nificant gain.

4. Future Work

Better detection of ROIs can be achieved through deep
learning. Two notable models that handle text detection
within images are EAST [28] and CRAFT [2]. These mod-
els are trained to find text within an image and would im-
prove step 1 of the algorithm presented in this paper. Boost-
ing the accuracy of the ROI detection would impact the al-
gorithm’s overall performance, as most of the failures occur

in the incorrect classification of text regions.

Furthermore, more exploration of CNNs for digit classi-
fication could be performed. There exist published models
that currently handle the classification of the SVHN dataset
better than ResNet18. However, any gains in classification
performance for this algorithm would not outweigh the ben-
efits of increasing step 1 performance. Initial efforts should
be focused on improving ROI detection.

5. Conclusion

An attempt at accurately detecting and classifying digits
in images was given in this paper. The two-step algorithm
proposed uses MSER with various filtering techniques to
identify ROIs that may contain digits. Then, a finetuned
ResNet18 CNN classifies the digit contained within the re-
gions of interest and further filters out unlikely candidates.
The algorithm performs well-detecting ROIs for sharp im-
ages that contain limited complicated blobs and bold text.
The CNN performs well classifying digits within the image
squares, as indicated by the accuracy on the test dataset.
More work should be done to improve the detection of the
ROI detector by using state-of-the-art deep learning models
to detect text. The results of this paper’s algorithm would
be greatly improved by modernizing the ROI detector.

References

[1] Papers with code - imagenet benchmark (image classifica-
tion). 1

[2] Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun,
and Hwalsuk Lee. Character region awareness for text de-
tection, 2019. 4

[3] Huizhong Chen, Sam Tsai, Georg Schroth, David Chen,
Radek Grzeszczuk, and Bernd Girod. Robust text detection
in natural images with edge-enhanced maximally stable ex-
tremal regions. pages 2609-2612, 09 2011. 2

[4] Xiangrong Chen and A.L. Yuille. Detecting and reading text
in natural scenes. In Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004., volume 2, pages II-1I, 2004. 2

[5] Hojin Cho, Myungchul Sung, and Bongjin Jun. Canny text
detector: Fast and robust scene text localization algorithm.
In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3566-3573, 2016. 2, 3

[6] Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh,
Bipin Suresh, Tao Wang, David J. Wu, and Andrew Y. Ng.
Text detection and character recognition in scene images
with unsupervised feature learning. In 2011 International
Conference on Document Analysis and Recognition, pages
440-445, 2011. 1

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05). 1

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248-255, 2009. 1

Yoav Freund and Robert E. Schapire. A short introduction to
boosting. 1999. 1

Kunihiko Fukushima. Neocognitron: A self-organizing neu-
ral network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics,
36(4):193-202, 1980. 1

Alvaro Gonzélez, Luis M. Bergasa, J. Javier Yebes, and Se-
bastidn Bronte. Text location in complex images. In Proceed-
ings of the 21st International Conference on Pattern Recog-
nition (ICPR2012), pages 617-620, 2012. 2

Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha
Arnoud, and Vinay Shet. Multi-digit number recognition
from street view imagery using deep convolutional neural
networks, 2014. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 1
Soukjun Kang, Daewoong Cha, Youngwoo Kim, and Dong
Han. Text region extraction in high contrasting image. Inter-
national Journal of Future Computer and Communication,
6:106-109, 09 2017. 2

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017. 4

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Ima-
genet classification with deep convolutional neural networks.
Neural Information Processing Systems, 25, 01 2012. 1

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278-2324, 1998. 1

Yao Li and Huchuan Lu. Scene text detection via stroke
width. In Proceedings of the 21st International Conference
on Pattern Recognition (ICPR2012), pages 681-684, 2012.
2

David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2):91-110, 2004. 1

Jiri Matas, Ondrej Chum, Martin Urban, and Tomas Pajdla.
Robust wide baseline stereo from maximally stable extremal
regions. Image and Vision Computing, 22:761-767, 09 2004.
1

SNEHA MOHAN.M and VINODKUMAR K. Canny edge
detection and mser featuresfor text matching. International
Journal of Advances in Electronics and Computer Science,
4(8):25-28, Aug 2017. 2

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y. Ng. Reading digits in natural
images with unsupervised feature learning. In NIPS Work-
shop on Deep Learning and Unsupervised Feature Learning
2011,2011. 2

Lukas Neumann and Jiff Matas. Real-time scene text local-
ization and recognition. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3538-3545,
2012. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

[25]

[26]

(27]

(28]

Li Fei-Fei. Imagenet large scale visual recognition challenge,
2015. 1

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition, 2015. 1
Adiba Tabassum and Shweta A. Dhondse. Text detection us-
ing mser and stroke width transform. In 2015 Fifth Interna-
tional Conference on Communication Systems and Network
Technologies, pages 568-571, 2015. 2

Jin-Liang Yao, Yan-Qing Wang, Lu-Bin Weng, and Yi-Ping
Yang. Locating text based on connected component and svm.
In 2007 International Conference on Wavelet Analysis and
Pattern Recognition, volume 3, pages 1418-1423, 2007. 2
Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang
Zhou, Weiran He, and Jiajun Liang. East: An efficient and
accurate scene text detector, 2017. 4

